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Information-Theoretic Online Multi-Camera
Extrinsic Calibration

Eric Dexheimer , Patrick Peluse, Jianhui Chen, James Pritts , and Michael Kaess , Senior Member, IEEE

Abstract—Calibration of multi-camera systems is essential for
lifelong use of vision-based headsets and autonomous robots. In
this work, we present an information-based framework for online
extrinsic calibration of multi-camera systems. While previous work
largely focuses on monocular, stereo, or strictly non-overlapping
field-of-view (FoV) setups, we allow arbitrary configurations while
also exploiting overlapping pairwise FoV when possible. In or-
der to efficiently solve for the extrinsic calibration parameters,
which increase linearly with the number of cameras, we propose
a novel entropy-based keyframe measure and bound the backend
optimization complexity by selecting informative motion segments
that minimize the maximum entropy across all extrinsic parameter
partitions. We validate the pipeline on three distinct platforms to
demonstrate the generality of the method for resolving the extrin-
sics and performing downstream tasks. Our code is available at
https://github.com/edexheim/info_ext_calib.

Index Terms—SLAM, calibration and identification.

I. INTRODUCTION

MULTI-SENSOR calibration is an essential task as in-
creasingly complex intelligent systems are deployed in

the world. Cameras are low-cost, lightweight, and low-power,
which makes them suitable for robotics and consumer headsets.
Compared to monocular setups, multi-camera systems allow
for increased FoV, which in turn improves robustness and
facilitates richer scene understanding. However, in order for
these vision systems to operate continuously in the real-world,
sensor calibration is required. While factory calibration using
targets [1] is repeatable and accurate, it is also time-consuming
and not possible for systems deployed in the wild. Ideally,
platforms should be able to passively correct for changes, such
as from physical shock and thermal deformation, during regular
operation.
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Fig. 1. Overview of proposed calibration pipeline. Keyframes are selected
based on the extrinsic calibration entropy, the information content of fixed-length
motion segments are evaluated, and a bounded database of segments is optimized
to improve the extrinsics estimates.

Accurate camera extrinsics are required for fundamental
building blocks of autonomous systems, such as visual odome-
try (VO) and stereo matching. Typical online calibration sys-
tems focus on monocular, stereo, or multiple cameras with
non-overlapping FoV. However, configurations vary greatly
across platforms, and may contain non-traditional FoV overlap.
Although treating cameras independently is general, accuracy
will be limited as compared to leveraging potential inter-camera
observations. Thus, the calibration framework should incorpo-
rate all information while remaining flexible.

In this work, we develop a general information-theoretic
framework for online multi-camera extrinsic calibration. The
frontend tracks intra-camera features temporally and matches
inter-camera features on select keyframes, while the backend
performs factor graph optimization of the extrinsics and auxil-
iary variables. Since the complexity can greatly increase with a
large number of cameras, we first propose a novel entropy-based
multi-camera keyframe selection method to sparsify the set of
body poses. After a number of keyframes, a motion segment
is generated, and its information content is checked against a
database of previous segments. Compared to previous methods,
the database scales independently of the number of cameras by
minimizing the maximum entropy across all extrinsic parameter
partitions. A high-level diagram of the proposed method is
shown in Fig. 1. We demonstrate the performance of our pipeline
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on three distinct configurations: a stereo camera on-board a
micro-aerial vehicle (MAV) [2], an 8-camera human-facing
headset rig over realistic simulation data, and a 5-stereo platform
on a ground vehicle.

II. RELATED WORK

A. Multi-Camera Extrinsic Calibration

Since multi-camera calibration is a fundamental requirement
for many autonomous systems, a wide variety of online methods
across different platforms have been proposed. Stereo extrinsic
calibration methods minimize epipolar error or reprojection
error [3]. Beyond stereo setups, multi-camera rigs have become
very popular due to greater robustness for multi-camera VO [4],
[5]. However, deployment of these setups is still a challenge,
as resolving accurate calibration parameters during operation
is required to achieve suitable performance. Online methods
for multi-camera extrinsic calibration focus on independent
extrinsic rotation estimation [6], monocular map matching [7],
non-overlapping extrinsic estimation for a car with odometry [8],
independent multi-camera visual-inertial calibration [9], or non-
overlapping stereo setups [10]. Treating cameras independently
when they have overlapping FoV can allow significant relative
extrinsic errors, which will hinder downstream dense correspon-
dence algorithms. An efficient, general framework of calibration
as a pose alignment problem with an application to two cameras
is presented in [11]. Therefore, all of these works either focus on
specific use cases or generalize the problem such that accuracy
may be limited.

B. Entropy-Based Keyframe Selection

Selecting informative keyframes is an essential component of
SLAM systems to bound computational complexity. [12] thresh-
olds a ratio of direct image alignment entropies, specifically
registering both the current frame and first frame after the last
keyframe to the keyframe. [5] follows a similar ratio threshold,
but instead measures the pose entropy based on Perspective-n-
Point (PnP) optimization with respect to the current SLAM map.
While these methods are suitable for SLAM, pose estimation
entropy from either keyframe alignment or map estimation will
largely be monotonic as the pose uncertainty increases with
exploration. For extrinsic calibration, this is less clear, as the
observability of parameters depends on the motion itself, not just
the registration to a map. Furthermore, differential entropy can
also be negative, so the ratio will not generalize in all cases. [13]
computes an independent sum over entropy reduction for each
map point. In this work for tractable multi-camera calibration,
we wish to avoid maintaining a full 3D map for the frontend,
and instead delay structure computation until the backend. In
addition, each of these works lacks a probabilistic interpretation
for the ratio of entropy and sum of entropy reduction heuristics,
while we leverage a different measure in terms of conditional
mutual information.

C. Segment-Based Self-Calibration

Calibration problems are expensive due to measurements
depending on calibration variables. Including landmarks in the
optimization can improve accuracy, but increases complexity.
Since all portions of a trajectory are not equally informative
about calibration parameters, some methods maintain a priority

queue of useful segments. This ensures the optimization is
tractable for real-time optimization of camera intrinsics [14]
visual-inertial parameters [15], and slowly drifting camera ex-
trinsics [11]. In this work, we develop a segment-based frame-
work specifically for the multi-camera use case to maintain
accuracy while limiting the complexity of an increasing number
of cameras.

III. PRELIMINARIES

A. Problem Formulation

For a platform with K cameras, we denote each as Ck, k ∈
1, . . . ,K. The extrinsic transformation from camera frame k to
the body (rig) frame B is TBCk

∈ SE(3). In some cases, we
will work directly with rotations R ∈ SO(3) and translations
t ∈ R3. As input, the system receives a stream of synchronized
frames from each camera Ck, as well as an odometry estimate.
The position estimate is the transformation from the body frame
at time t to the world frame, and is denoted as TWBt

. We
focus on odometry information because it is applicable to a
wide variety of platforms, such as those generating LiDAR or
GPS-based state estimates, which can constrain the scale of
the extrinsics. As output, we wish to optimize for the extrin-
sic calibrations TBCk

, k ∈ 1, . . . K, as well as auxiliary vari-
ables. Specifically, we also optimize for body poses TWBt

, t ∈
1, . . . , T , temporally-tracked 3D landmarks, lm,m ∈ 1, . . . ,M ,
and stereo landmarks sn, n ∈ 1, . . . , N .

B. Nonlinear Least Squares

We wish to perform maximum a posteriori (MAP) estima-
tion over a set of unknown variables x under the assumption
of Gaussian measurement noise. The nonlinear least squares
(NLLS) minimization is

x̂ = argmin
x

1

2

∑
i

||zi − fi(xi)||2Σi
(1)

where zi is the measurement, fi(xi) is a nonlinear prediction
function based on the current state, and Σi is the measurement
covariance. Given an initial guess for the state x0 and after
linearizing the constraints at the current variable estimates, we
can solve for a state update vector

δx̂ = argmin
δx

∑
i

||zi − fi(x
0
i )− Fiδxi||2Σi

(2)

where Fi is the Jacobian of the measurement function fi eval-
uated at the current linearization point. This can be solved by
stacking the terms into the Gauss-Newton normal equations

JTΣzJδx̂ = JTΣzr (3)

where J stacks the Fi Jacobian terms, Σz creates a block-
diagonal matrix from the measurement covariances Σi, and r
stacks the residuals zi − fi(x

0
i ).

C. Posterior Information Content

We are often interested in approximating the uncertainty of
the posterior instead of just the point estimate. We can effi-
ciently recover a Gaussian approximation to the posterior via
the Laplace approximation [16] with the Fisher information ma-
trix Ix = JTΣzJ. The differential entropy of a d-dimensional
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multivariate Gaussian can be used to express the information
content as a scalar value:

H(x) = −1

2
ln |Ix|+ d

2
(1 + ln (2π)). (4)

IV. FRONTEND

The framework consists of a frontend, which tracks monocu-
lar features, selects keyframes, and finds stereo correspondences,
and a backend, which incorporates this information to optimize
for the extrinsics, as shown in Fig. 1. Within the frontend, the
proposed entropy-based keyframe selection method ensures a
minimal number of poses are selected for backend optimization,
while providing sufficient information to resolve the extrinsics.
Since there may be potentially many pairs of cameras with FoV
overlap, we conduct stereo matching after a fixed number of
keyframes. Furthermore, since stereo matching is performed
across cameras at a single timestep, it can operate at a lower
frequency than keyframing.

A. Entropy-Based Keyframing

Each camera performs independent feature detection and
tracking as to not bias the calibration. First, features are detected
using FAST corners [17] with grid bucketing to ensure an even
distribution of features. Next, features are tracked temporally
using KLT [18], and each camera performs 5-point essential
matrix RANSAC to prune outliers [19].

While every frame could be passed to the backend, this
would introduce redundancy, as little information about calibra-
tion parameters is gained without significant motion. Common
keyframe heuristics include motion or feature thresholds, but
these methods do not generalize across camera rigs and envi-
ronments. Entropy-based keyframe selection has been leveraged
for visual odometry [5], [12], [13], but pose estimation is not
equivalent to calibration. For example, motion could be well-
constrained for image alignment or PnP in a straight-line trajec-
tory, but the extrinsic translations would not be. The uncertainty
of the current pose will increase since the last keyframe, while
the calibration uncertainty is less clear.

We introduce an approximate entropy-based keyframe se-
lection method. We do not require a sparse map for pose es-
timation, and since explicitly maintaining one as in [5], [13]
is expensive, we defer the use of triangulation and bundle
adjustment to the backend. Given only feature tracks, esti-
mates of the extrinsics, and the locally-accurate odometry, we
wish to determine when a keyframe provides sufficiently new
information. By formulating a NLLS problem with the extrin-
sics as unknowns, we can measure the entropy of the extrin-
sics H(TBC)=

Δ H(TBC1
, . . . ,TBCK

). Therefore, a residual
function dependent on the extrinsics is required.

The multi-camera rig can be viewed as a generalized camera
rig without a single center of projection, which follows the
generalized epipolar constraint (GEC) [20]. From the notation
in [21], the jth Plücker line in camera k is denoted as

�kj =
[
(RBCk

x̂kj)
T ([tBCk

]×RBCk
x̂kj)

T
]T

(5)

where x̂kj is the normalized image coordinates, while RBCk

and tBCk
are the extrinsic rotation and translation, respectively,

of camera k. Then, each Plücker line correspondence is related

Fig. 2. Example of active and inactive constraints with current frame and
corresponding entropy measures for keyframe selection.

by the GEC:

rkj = �′Tkj

[
[t]×R R

R 0

]
�kj ≈ 0 (6)

where R and t are the relative rotation and translation, respec-
tively, between the two body frames, while �kj and �′kj are
Plücker line correspondences between two time steps. In reality,
these terms will be nonzero due to noise in the odometry, extrin-
sics, and data association. However, we are only interested in the
information content of the extrinsics, and treat the body poses as
locally accurate. We thus formulate these correspondences into
the NLLS

argmin
RBCk

,tBCk
,k∈1,...,K

K∑
k

∑
j

||rkj ||2 . (7)

As mentioned in Section III, the entropy provides a scalar
value measuring how well the extrinsics variables are con-
strained. Since each camera’s correspondences are independent
given fixed body poses, this can be efficiently calculated using
the block diagonal determinant rule:

H(TBC) = −1

2
ln(|IR1

| · |It1 | · · · · · |IRK
| · |ItK |) + C (8)

whereC is the constant term from (4). As mentioned in [5], [12],
[13], absolute thresholds on entropy do not generalize. We are
also specifically interested in whether significant information
about the calibration parameters is gained by inserting a new
keyframe. Therefore, we evaluate the entropy using features with
a reference keyframe, denoted active, as well as the entropy with
both these features and features with no keyframe reference,
denoted inactive. As shown in Fig. 2, active features have a
correspondence with their first keyframe observation, while
inactive features have one with their first observation in a pose
buffer since the last keyframe.

The ratio heuristics proposed in [5], [12] do not generalize, as
differential entropy can be negative, so sign flips are possible.
Instead, we propose a principled threshold by leveraging the
conditional mutual information:

I(TBC ;X
i, x̂i|Xa, x̂a) = H(TBC |Xa, x̂a)

−H(TBC |Xa, x̂a,Xi, x̂i) (9)

which measures the information that we can observe about the
calibration unknowns by incorporating the inactive poses Xi

and normalized image coordinate correspondences x̂i, when the
active poses Xa and correspondences x̂a are already observed.
Since mutual information is in the range [0,∞), we select a
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Fig. 3. Example of stereo constraints for an 8-camera human facing rig. Both
static and dynamic observations are included, which improves robustness of
matching against the large viewpoint changes.

threshold p ∈ (0, 1] such that a new keyframe is chosen when

I(TBC ;X
i, x̂i|Xa, x̂a) > − ln(p). (10)

B. Stereo Observations

While the temporal feature tracking and keyframing treats
cameras independently, calibrating based only on monocular
information is not sufficient for tasks such as dense correspon-
dence and reconstruction when FoV overlap is present. These
relative constraints may also improve robustness to odometry
drift, as stereo constraints do not rely on temporal information.
Furthermore, this allows for handling points that violate the
static landmark assumption, such as points on the human body,
which may provide essential information about the extrinsics.
As a user-specified input, a set of pairs of cameras to attempt
stereo matching is listed, which can be determined via rough
FoV estimates or inspection of images.

For each pair, a matching procedure similar to [22] is per-
formed. First, in addition to the current tracked features in
each image, FAST features [17] are detected while ensuring
distribution across the image via bucketing. While [22] uses
BRIEF descriptors [23], we use ORB descriptors [24] since the
cameras are not assumed to have near-identity rotation as in most
stereo pairs. Features are undistorted to normalized image coor-
dinates, and before being matched with cross-consistency and
a uniqueness threshold, potential matches are pruned using the
current extrinsics and a loose epipolar Sampson threshold [25].
Then, 5-point RANSAC [19] finds a single hypothesis, and
if there are enough matches that triangulate in front of both
cameras, features are passed to the backend. An example of
stereo constraints for a human-facing 8-camera rig is shown in
Fig. 3, where consecutive pairs are checked.

V. BACKEND

The backend takes in temporally-tracked and stereo features,
as well as initial keyframe pose estimates. A motion segment
is generated after a fixed number of keyframes. The segment’s
information content with respect to the calibration parameters is
evaluated based on the factor graph formulation in Section V-A.
A segment is accepted by the segment database if it improves the
total information content in the database, which is formulated

Fig. 4. Factor graph for 3-camera system consisting of body poses, extrinsics,
and landmarks as the unknowns to be solved. In this example, stereo matching
is conducted every 4 keyframes.

specifically for the multi-camera use case as described in Sec-
tion V-B. If a new segment is added, the database factor graph
is modified, and optimization will recommence.

A. Factor Graph Formulation

An example of a factor graph for a 3-camera rig is shown in
Fig. 4. Extrinsic calibration variables are densely connected to
projection factors, and stereo matching is run pairwise between
cameras after a fixed number of keyframes. Given the set of land-
marks observed by camera Ck observed at time t as O(Bt, Ck),
the NLLS problem is:

min ||p(TWB1
, zp)||2Σp

+
T−1∑
t=1

||o(TWBt
,TWBt+1

, zo)||2Σo,t

+

K∑
k

T∑
t

⎛
⎝O(Bt,Ck)∑

lm

||rt,k(lm)||2Σr
+

O(Bt,Ck)∑
sn

||rt,k(sn)||2Σr

⎞
⎠

(11)

where the prior error p constrains the 6-DOF gauge freedom
to a frame origin zp, the odometry error o enforces 6-DOF
consistency with relative measurement zo, and rt,k(l) = zr −
π(TWBt

,TBCk
, l) is the reprojection error for a landmark l

with observation zr. Measurement covariances are assumed to
be known a priori. Stereo landmarks lack temporal constraints,
so they only enforce relative constraints between cameras, while
monocular landmarks are temporally tracked. However, these
may still incorporate observations from other cameras if they
are matched via stereo.

B. Segment Database for Multi-Camera Extrinsic Calibration

While all keyframes and landmarks could be continuously
added to the optimization, the factor graph will grow unbounded.
In addition, not all motions or environments are conducive for
observing calibration parameters, so we follow the methodology
of [26] and [27], in which a priority queue of the most infor-
mative segments is maintained. However, both [26] and [27]
have a bounded number of parameters, as they only focus on
monocular intrinsics and monocular visual-inertial odometry,
respectively. In [27], calibration parameters are partitioned into
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three distinct partitions, each of which has a maximum number
of segments. This ensures that all sets of calibration parameters
are well-constrained, as a single priority queue could be dom-
inated by only the most observable parameters. Following this
technique for the multi-camera case, however, can create sig-
nificant variation in the total number of segments. For example,
8 cameras each with rotation and translation partitions, along
with a maximum of 4 segments per partition, can result in a full
database ranging from 4 to 64 segments. Instead, we propose
to limit the absolute number of segments by minimizing the
maximum entropy across all partitions.

To calculate the information content of a segment, landmarks
are initialized via robust triangulation, and the segment factor
graph is optimized so that the Laplace approximation can be
utilized. For each camera Ck, we then obtain the marginal
information in the extrinsic rotation IRk

= Σ−1
Rk

and translation
Itk = Σ−1

tk
separately. Since different types of motion and ob-

servations may be useful for resolving rotation and translation,
we keep them separate. To quantify information content with a
scalar for new segment S̄, we calculate the entropy as in (4) for
each of the 2˜K parameter partitions θj , which is denoted as
H S̄(θj). Then, the partition with the maximum entropy in the
current databaseD is approximated by independently evaluating
each segment Si and adding the marginal information matrices
for a given partition ISi

θj
:

IDθj
=

∑
Si

ISi

θj
(12)

HD(θj) = −1

2
ln |IDθj

|+ d

2
(1 + ln (2π)) (13)

jmax = argmax
j

HD(θj). (14)

Note that the information content depends only on obser-
vations within a segment, which as mentioned in [15], is a
conservative estimate, but is efficient and avoids biasing the
estimation. If the entropy for partition jmax of the new segment
H S̄(θjmax) is less than that of the segment with maximum entropy
in the same partition, then the new segment is a candidate.
However, in order for the new segment to replace the old one,
all entropy partitions must not increase beyond the current
maximum entropy, HD(θjmax). This greedy selection strategy
ensures that the maximum entropy across all partitions in the
database never increases.

C. Optimization

If a new segment is added, a new optimization will be triggered
to determine the calibration variables. Segments are joined
using odometry constraints or based on sufficient landmark
co-visibility similar to [15]. For collections of segments that
are disjoint, we need to place a pose prior on the first pose
of each collection in order to constrain the gauge freedom.
Observations of common features across segments are merged,
and landmarks are initialized using robust triangulation. We use
Levenberg-Marquardt to minimize the nonlinear objective. In
practice, reprojection factors from (11) use the Huber cost for
robustness against outliers.

Fig. 5. Number of 10-pose segments that fall below D-optimality threshold
for different keyframe measures. Five representative thresholds are tested per
method, with the entropy and feature thresholds in {0.1, 0.3, 0.5, 0.7, 0.9}
and translation threshold in {0.01, 0.05, 0.10, 0.50, 1.00} meters. Greater
transparency indicates a lower threshold.

VI. RESULTS

A. Entropy-Based Keyframe Selection

In Fig. 5, we compare the proposed entropy-based keyframe
method against two baselines, a relative threshold on tracked
features and an absolute translation threshold across three unique
datasets. The plots look at the determinant of the extrinsic
marginal covariances, known as the D-optimality, of generated
10-pose segments. In order to pass the threshold, every camera
in the rig must have a D-optimality less than the threshold. An
ideal threshold would induce a steep curve as far to the left as
possible, indicating that many informative segments are being
generated. Across all datasets, the proposed entropy threshold
performs best, as it induces steep curves for a low number of
segments, while the baselines have varying performance. Note
that generating the largest number of segments is not the most
desirable, as quality is sacrificed for quantity. For example, the
translation threshold performs poorly in the indoor datasets,
while the feature threshold generates the least informative seg-
ments in the outdoor dataset. The translation baseline performs
the best in the outdoor experiment due to the fast vehicle motion
and low frame rate, so almost all frames are selected. Since
the proposed entropy threshold leverages the GEC, which does
not directly correspond to the SfM problem used for marginal
covariances, there can be some discrepancy in the objective
for the outdoor dataset. The Plücker line correspondences may
provide some information, but they do not account for all of a
feature’s observations, and if the points cannot be triangulated,
which is often in the case of a forward-moving ground vehicle,
then they provide no information for the extrinsic marginal
covariance. The highest threshold of 0.9 for the proposed en-
tropy method generalizes well across all datasets by generating
highly-informative segments and a substantial number of useful
ones, so this is used in the framework.

To further evaluate the impact on the final extrinsic estimates,
we conduct experiments on the two indoor environments, as we
have a reliable comparison to the offline calibration of the stereo
pair, and the simulated 8-camera dataset has known ground-truth
extrinsics. We do not include the 5-stereo ground vehicle data,
as there are no reliable known extrinsics since the pairs do not
significantly overlap. In Fig. 6(a), we limit the number of seg-
ments to 4 and run ten trials for each odometry noise parameter.
The thresholds are selected according to the best curves from
Fig. 5 for a low number of segments. Despite assuming locally
accurate odometry in the formulation, the proposed entropy
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Fig. 6. Extrinsic errors across keyframe methods.

Fig. 7. EuRoC results. 7(a) Mean error of extrinsics vs. max number of
segments. Data points on y-axis and corresponding lines indicate average error
from offline batch solution. 7(b) Baseline error vs. simulated odometry error
with and without stereo factors.

method is not severely affected, and is still able to perform well.
In Fig. 6(b) and (c), ten trials are run for an increasing number of
segments, and the entropy method performs best, especially for
a low number of segments. This demonstrates the ability of the
method to provide informative segments. Once more segments
are allowed, the methods all converge to similar errors as there
is sufficient information present for all in the optimization. This
result demonstrates that the proposed entropy-based keyframe
procedure reduces the influence on the amount of data, and is
useful for limiting the problem size in real-time operation.

B. MAV Stereo Pair (EuRoC)

1) Effect of Segment Database Size: First, we evaluate the
accuracy of the calibration against the maximum number of
segments permitted in the database. We run 25 trials with simu-
lated error on the pose estimates from the ground-truth motion
capture and on the extrinsics provided via offline calibration.
Since the database can be maintained over multiple sessions,
we run on the datasets V1_02_medium and V2_02_medium,
which provide reasonable motion for constraining the calibration
parameters. The mean error from the offline calibration versus
the number of segments is shown in Fig. 7(a). In general, the
error for the more easily observable rotation only decreases until
5 segments, while translation error stabilizes at 8 segments. We
also plot the average error from a batch solution using all possible
segments which does not run in real-time. The online method
demonstrates asymptotic convergence to the batch solution, but
also shows bias from the offline Kalibr calibration. As mentioned

Fig. 8. Summary of errors across 12 datasets for 8-camera system with varying
odometry noise. Each boxplot is for 96 data points.

in [2], there are potential errors accumulated in the IMU-Vicon
calibration due to deteriorated motion tracking and time offsets.

2) Effect of Stereo Factors: While optimizing for each of the
extrinsics without relative constraints is often done, we show
the effect of the estimated baseline direction vs. increasing
odometry noise in Fig. 7(b). Note that using stereo factors every
3 keyframes avoids any significant increase in the baseline error,
which will improve disparity estimation.

C. Simulated 8-Camera Human-Facing Headset Rig

We also conduct experiments on an 8-camera human-facing
rig in a realistic simulation setup. Seven-thousand frames of
human animation were captured using an Xsens MVN Link
suit, and the motion was then retargeted to Mixamo bodies
with varying size and appearance. A differentiable renderer,
Unity HDRP DX12, provides a physically-based material and
lighting setup for the human model and environment. Matterport
environments with point lights and shadows were used to create
realistic situations, as shown in Fig. 3.

A total of 12 datasets with varying indoor environments and
characters were tested. Compared to standard stereo setups,
there are significant viewpoint changes, wide-angle lenses, and
potential overlap beyond neighboring pairs. In addition, a large
portion of the image is dynamic, but these points can still be
leveraged by stereo factors. We utilize a human segmentation
mask by taking the ground-truth and roughly dilating it, which
could alternatively be provided by learned methods.

1) Accuracy Across Datasets: We test three configurations:
without stereo constraints, using 1-nearest neighbor (1NN)
stereo constraints, and up to 2-nearest neighbor (2NN) con-
straints. This results in 0, 8, and 16 pairs to be checked. Stereo
matching is only run every 10 keyframes, or once per segment.
The segment database is limited to 4 segments to achieve
real-time performance. A summary of the simulated results are
shown in Fig. 8. Each boxplot contains 8 cameras across 12
environments, for a total of 96 data points. As expected, both
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Fig. 9. Point clouds for 8-camera rig via pairwise stereo rectification,
SGBM [28] disparity estimation, and triangulation.

absolute rotation and translation errors increase with odometry
noise. All methods are comparable for rotation, while 2NN
performs best for absolute translation, followed by 1NN, since
the additional long-range constraints are able to better resolve
the extrinsics. For relative errors, not using stereo results in
significant baseline errors with increasing noise, while both 1NN
and 2NN stereo configurations are able to constrain these errors.
In terms of relative calibration errors, 2NN performs slightly
better than 1NN, while no stereo demonstrates that the lack of
relative constraints permits significant errors.

2) Qualitative Stereo: A qualitative example example of
dense correspondence after calibration is shown in Fig. 9 where
semi-global block matching (SGBM) [28] is used. With no stereo
observations, the quality of the disparity is not sufficient, as the
epipolar lines are not accurate. Clearly, the 3D cloud accumu-
lated by triangulating 3D points is inconsistent, especially in
the ground plane. For 1NN, the disparity, or local consistency,
is improved significantly, but the global consistency and flat
ground is more evident for 2NN.

D. 5-Stereo Ground Vehicle

We test calibration on a 5-stereo near-infrared (NIR) rig with
a front-facing 190 ◦ FoV setup on a ground vehicle (GV). The
datasets are challenging, as the vehicle can move up to a few
meters per second in forest environments, yet the camera system
only has 4 frames-per-second (FPS). One 650 m trajectory is
used for calibration purposes, while a second 2300 m trajectory
is used to evaluate VIO performance.

ORB matching [24] is included as a backup to KLT [18]
since there is significant motion between frames. The database
size is limited to 4 segments, and stereo matching is performed
every 3 keyframes. A prior with 1 cm standard deviation on
the extrinsic translations from CAD is included due to the lack
of observability while allowing the baseline to be optimized.
The odometry estimates come from a GPS-IMU state estimate,
which is modified with 5e-3 noise to create drift, and the
extrinsics are initialized with perturbed values. An example
visualization of the data is shown in Fig. 10.

The multi-stereo VIO pipeline uses the extrinsics to perform
disparity estimation, and matching is conducted for 2D-3D ORB
correspondences from disparity. Outlier rejection selects P3P
models from the front stereo pair as it is the most reliable,
while inliers are checked across all cameras. Stereo reprojection
factors and IMU preintegration factors [29] are added to a
fixed-lag smoother inspired by the backend of [30].

Four configurations are tested: offline calibration in conjunc-
tion with a CAD estimate of the IMU pose, online calibration
without stereo constraints, calibration with stereo constrains,
and a batch offline solution with stereo where the number of

Fig. 10. 5-stereo NIR data with poses, landmarks, images, and rig.

Fig. 11. 5-stereo VIO trajectory comparison and RPE statistics.

TABLE I
TIMING IN MILLISECONDS FOR KEY STEPS OF FRAMEWORK ACROSS

DATASETS. ALL RESULTS ARE RUN ON A 2.7 GHZ QUAD-CORE INTEL CORE I7

segments is not limited so that the entire trajectory is used.
Qualitative VIO trajectories and relative pose error (RPE) statis-
tics comparing the four are shown in Fig. 11. Without stereo
constraints, the extrinsics are not suitable, and allow significant
drift in the ground plane. Including stereo constraints, however,
produces a significantly better trajectory. While there is some
z-drift for stereo and batch as compared to the offline/CAD cal-
ibration, this is largely due to a single bad pose estimate, as seen
by the maximum RPE, which also skews the standard deviation.
As expected, the batch solution performs best overall in terms of
the RPE statistics, but the stereo case is very competitive while
also running online.

E. Timing

Timing results in milliseconds for significant components of
the calibration pipeline across each of the datasets are shown in
Table I. Note that these steps operate at different frequencies.
Frames in the 30 Hz headset datasets are dropped for feature
tracking, but in the future, processing for each of the 8 cameras
could be parallelized better. The keyframe selection method
is very lightweight. Since the segment information calculation
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and database proposal only happens every 10 keyframes, and
given the sparsity of frames selected as keyframes, one second
is sufficient for real time operation. In the future, landmark
triangulation could be reused between steps.

VII. CONCLUSION

We have developed a general online multi-camera extrinsic
calibration framework. In order to achieve efficient operation,
we proposed a novel information-theoretic keyframe selection
method and created a segment database approach specifically
for multi-camera systems. We evaluated the pipeline on three
distinct platforms to demonstrate the generality of the method,
and showed that integrating inter-camera constraints improved
results when possible. By ensuring accurate relative and absolute
extrinsic transformations, we exhibited improved downstream
tasks such as dense correspondence and VIO. For future work,
it would be interesting to leverage the change detection from [31]
into the segment-based calibration framework for true life-long
operation. Lastly, performing degeneracy-aware optimization
could alleviate issues with low observability.
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